首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   7篇
  国内免费   1篇
化学   209篇
晶体学   1篇
力学   15篇
数学   19篇
物理学   65篇
  2023年   1篇
  2022年   2篇
  2021年   13篇
  2020年   10篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   14篇
  2015年   10篇
  2014年   11篇
  2013年   10篇
  2012年   24篇
  2011年   41篇
  2010年   12篇
  2009年   13篇
  2008年   20篇
  2007年   29篇
  2006年   17篇
  2005年   16篇
  2004年   7篇
  2003年   7篇
  2002年   11篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1996年   7篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有309条查询结果,搜索用时 46 毫秒
301.
In this study, the use of pure water at superheated temperatures, between 100 and 200 degrees C, as a mobile phase for RP separation is explored. Instrumental parameters, such as temperature, flow rate, preheating and cooling, have shown significant effects on the quality of the chromatographic peaks. The properties of superheated water as an eluent were investigated by observing the chromatographic behaviour of four parabens on a carbon-clad zirconia (ZR) phase with covalently bonded octadecyl groups. Results were compared with those obtained at 30 degrees C on a silica-based phase with octadecyl groups, using water and ACN as mobile phase. The optimized method was finally applied to analyse parabens in a commercial body cream.  相似文献   
302.
A multi-residue liquid chromatography/tandem mass spectrometry method (LC/MS2) was developed for the detection of the non-steroidal anti-inflammatory drugs acetylsalicylic acid (via the marker residue salicylic acid), flunixin, phenylbutazone, tolfenamic acid, meloxicam and ketoprofen, in bovine muscle. After extraction of the bovine muscle with acetonitrile, the cleanup was performed using a Oasis HLB column. The evaporated eluate was reconstituted and analysed by LC/MS2. To obtain optimal detection of salicylic acid and phenylbutazone, the ion trap mass spectrometric parameters activation q and maximum ion injection time, respectively, were optimised. The activation q for salicylic acid was increased to obtain reliable detection of both salicylic acid and its product ion. The maximum ion injection time for the time segment containing phenylbutazone was decreased since there were not enough scans across the chromatographic peak of this compound. The multi-residue method was able to detect the different analytes below or at the maximum residue limit (MRL) or minimum required performance limit (MRPL) or, in the case of phenylbutazone and ketoprofen, at 100 and 20 microg kg(-1), respectively.  相似文献   
303.
The aim of this study was to characterize the phytochemical content as well as the antioxidant ability of the Moroccan species Chamaerops humilis L. Besides crude ethanolic extract, two extracts obtained by sonication using two solvents with increased polarity, namely ethyl acetate (EtOAc) and methanol-water (MeOH-H2O) 80:20 (v/v), were investigated by both spectroscopy and chromatography methods. Between the two extracts, the MeOH-H2O one showed the highest total polyphenolic content equal to 32.7 ± 0.1 mg GAE/g DM with respect to the EtOAc extract (3.6 ± 0.5 mg GAE/g DM). Concerning the antioxidant activity of the two extracts, the EtOAc one yielded the highest value (1.9 ± 0.1 mg/mL) with respect to MeOH-H2O (0.4 ± 0.1 mg/mL). The C. humilis n-hexane fraction, analyzed by GC–MS, exhibited 69 compounds belonging to different chemical classes, with n-Hexadecanoic acid as a major compound (21.75%), whereas the polyphenolic profile, elucidated by HPLC–PDA/MS, led to the identification of a total of sixteen and thirteen different compounds in both EtOAc (major component: ferulic acid: 104.7 ± 2.52 µg/g) and MeOH-H2O extracts (major component: chlorogenic acid: 45.4 ± 1.59 µg/g), respectively. The attained results clearly highlight the potential of C. humilis as an important source of bioactive components, making it a valuable candidate to be advantageously added to the daily diet. Furthermore, this study provides the scientific basis for the exploitation of the Doum in the food, pharmaceutical and nutraceutical industries.  相似文献   
304.
This study aimed to evaluate the polyphenolic composition along with the biological activity of guabiroba (Campomanesia xanthocarpa Berg.) fruits using comprehensive two-dimensional liquid chromatography (LC × LC). A simplex centroid design comprising three solvents (methanol, 2% acetic acid, and acetonitrile) was used to optimize the extraction mixture for polyphenols from ripe and unripe guabiroba fruits. A quantitative LC × LC platform was proposed to characterize the guabiroba extracts using a RP-Amide column and a C18 column in the first and second dimensions, respectively. Antidiabetic properties, using in vitro enzyme assay models and in vivo antioxidant activity with the eukaryote model Saccharomyces cerevisiae, was measured. Total phenolics compounds were more efficiently extracted with 2% acetic acid solution and acetonitrile (50:50, v/v). A total of 37 different compounds were identified and quantified using the proposed LC × LC method (linearity ranging from 0.9990 to 0.9994, intra- and interday precision from 0.40 to 10.57% and, accuracy from 81.89 to 108.98%). Significant differences were observed between ripe and unripe guabiroba fruits, especially for the compounds geraldone and methyl galangin isomer. Guabiroba fruits showed significant antidiabetic and antioxidant properties and may be potentially adopted as part of dietary strategies in the management of early stages of type 2 diabetes and associated complications.  相似文献   
305.
Abstract

Punica granatum L., commonly known as pomegranate, is an ancient fruit widely consumed all over the world as fresh fruit or juice. In addition, it is extensively used in therapeutic formulas, cosmetics and food seasonings. The fruit is native to Afghanistan, Iran, China and the Indian sub-continent. The pomegranate market has steadily grown, presumably due to the increasing demand of health-conscious consumers for products with potential beneficial effects on human health, due to the synergistic presence of a unique and complex phytochemical composition that enclose anthocyanins, phenolic acids and hydrolysable tannins. Conventionally, for their analysis liquid chromatography is employed even though it can present some drawbacks in terms of resolving power. In this contribution, as a valuable alternative, comprehensive two-dimensional liquid chromatography with “shifted gradients” in the second dimension, was applied for the characterization of three pomegranate samples, leading to the identification of 37 different polyphenolic compounds.  相似文献   
306.
Natural prenyloxycinnamic acids were shown to exert in vitro and in vivo remarkable and valuable anti-cancer and anti-inflammatory effects. Among these, 4??-geranyloxyferulic acid [3-(4??-geranyloxy-3??-methoxyphenyl)-2-trans-propenoic acid] was discovered as an efficient orally active chemopreventive agent of several types of cancer, and its structural analogue boropinic acid was shown to exert a valuable inhibitory effect both in vitro and in vivo against the growth of Helicobacter pylori. As a continuation of our chemical, chemico-physical, and pharmacological studies on these secondary metabolites, we report herein the comparison between traditional UV/Vis assays and HPLC?CDAD methods for the determination of the molar absorptivity coefficient of 4??-geranyloxyferulic acid (?? 310 = 12,950 and ?? 288 = 11,910 L mol?1 cm?1) and boropinic acid (?? 310 = 13,510 and ?? 288 = 12,350 L mol?1 cm?1). Ferulic acid was merely used as a reference standard to test the possibility of the application of these two assays to the oxyprenylated compounds. The data reported in the present study will represent an essential aid for future studies aimed to better define the pharmacological profile and the mechanism of action of these compounds and are an important starting point to evaluate other natural products where standard powders are not available.  相似文献   
307.
A combination of microwave irradiation and flow chemistry has been described as a promising smart and hyphenated technology that can fuse and synergize the benefits of the techniques. The cells and tissues of all living organisms promote a huge number of bioorganic reactions that occur as flow systems and not the batch‐type conditions typically used by chemists and biotechnologists. Microwave‐assisted chemical conversion carried out in continuous flow mode with micro‐ or meso‐channel reactors can offer significant processing advantages, including improved thermal exchange, energy efficiency, safety, mixing control, a wider range of reaction conditions, repeatability and scalability as well as dramatic reductions in side‐reactions and degradations. This review will discuss relevant examples of organic synthesis and nanoparticles production performed in continuous flow mode with integrated microwave irradiation in micro‐ or mesofluidic systems.  相似文献   
308.
Linear models and synchronous response are generally adequate to describe and analyze rotors supported by hydrodynamic bearings. Hence, stiffness and damping coefficients can provide a good model for a wide range of situations. However, in some cases, this approach does not suffice to describe the dynamic behavior of the rotor-bearing system. Moreover, unstable motion occurs due to precessional orbits in the rotor-bearing system. This instability is called “oil whirl” or “oil whip”. The oil whirl phenomenon occurs when the journal bearings are lightly loaded and the shaft is whirling at a frequency close to one-half of rotor angular speed. When the angular speed of the rotor reaches approximately twice the natural frequency (first critical speed), the oil whip phenomenon occurs and remains even if the rotor angular speed increases. Its frequency and vibration mode correspond to the first critical speed. The main purpose of this paper is to validate a complete nonlinear solution to simulate the fluid-induced instability during run-up and run-down. A flexible rotor with a central disk under unbalanced excitation is modeled. A nonlinear hydrodynamic model is considered for short bearing and laminar flow. The effects of unbalance, journal-bearing parameters and rotor arrangement (vertical or horizontal) on the instability threshold are verified. The model simulations are compared with measurements at a real vertical power plant and a horizontal test rig.  相似文献   
309.
This paper presents a hybrid procedure for mechanical characterization of hyper-elastic materials based on moiré, finite element analysis and global optimization. The characterization process is absolutely general because does not require any assumption on specimen geometry, loading or/and boundary conditions.The novel experimental approach followed in this research relies on a proper combination of intrinsic moiré and projection moiré which allows 3D displacement components to be measured simultaneously and independently using always the same experimental setup and just one single camera. In order to properly compare experimental data and finite element predictions, 3D displacement information encoded in moiré patterns which are relative to the deformed configuration taken by the specimen are expressed in the reference system of the unloaded state.A global optimization algorithm based on multi-level and multi-point simulated annealing which keeps memory of all best records generated in the optimization is used in order to find the unknown material properties through the minimization of the Ω functional built by summing over the differences between displacements measured experimentally and those predicted numerically.Feasibility, efficiency and robustness of the proposed methodology are demonstrated for both isotropic and anisotropic specimens subject to increasing pressure loads: a natural rubber membrane and a glutaraldehyde treated bovine pericardium patch, respectively. Remarkably, the results of the characterization process are in very good agreement with target data independently determined. For the isotropic specimen, the maximum error on hyper-elastic constants is less than 1% and the residual error on displacements is less than 3.5%. For the anisotropic specimen, the maximum error on material properties is about 3.5% while the residual error on displacements is less than 3%. The identification process fails or becomes less reliable if “local” displacement values are considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号